Z mass cut removal

Top Dilepton Meeting June 18, 2003

Mircea Coca
with U of Rochester Group
(Eva H., Andy H., Ricardo E., Andrew I.,
Paul T.)

ttbar: Mee invariant mass

- 24 % of ee or µµ events fall inside mass window
- Overall:12 % loss in the acceptance
- How to recover part of this loss?

How we get MET in a Z->ee event? Met vs jet multiplicities

MET degrades as #jets increases

- Electrons are required to be fiducial, so typically they are very well measured (brem?)
- Our calorimeter has many cracks which are perfect place for jet fragments to escape
 - 1) MET tends to be close to a jet
 - 2) the nearest jet from MET should be also near a crack

Making up statistics

- Because ee and μμ distributions agree very well (see Winter plots) I will look in ee channel only
- To study new cuts and take out any possible biases I look at distributions of events passing all the cuts (except OS)
- Not enough statistics (at most 25 events using alpgen sample)-> include electrons with η < 2.0 and looser id cuts -> these events fall in the mass window -> well reconstructed electrons-> 105 events (alpgen Z(ee)+2p atop23)

Variable investigated

- Missing energy significance (CDF 3387)
- Jet significance (CDF 3387)
- Angle between di-electrons (xy plane)
- Tighter mass cuts
- Tighter MET inside Z mass window (a la D0)

 $\Delta \phi$ (di-jets, di-leptons)

Jet significance (or "met insignificance")

- Assuming that MET is due to undermeasured jets, we expect that higher jet E_T, higher jet fluctuation->larger MET.
- To quantify the ratio between MET and jet activity along MET direction define:

$$jetsig = \frac{\sum_{|\Delta F(met, jet) < 90|} |\vec{E}_{T}|}{\sqrt{\sum_{|\Delta F(met, jet) < 90|} |\vec{E}_{T}|}}$$

Just a reminder...

- We decided for the Summer to correct the jets for level 5 (assuming one primary vertex per event, so no multiple interactions correction) $E_T > 15$ GeV and $|\eta| < 2.5$ >"tight" jets
- The propagate the effect of corrections into the MET, H_T
- So we consider only tight jets for the jet significance definition

Jet sig for events: M_{ee} (76, 106) GeV, >=2jets

ttbar MC:

Mean: 1.76

RMS: 1.22

36% of events have jetsig > 6

Z(ee) MC:

Mean: 0.70

RMS: 0.47

15% of events have jetsig > 6

After all the cuts...

Z(ee) MC:

105 events

Mean: 0.94

RMS: 0.44

4% with jetsig > 6

(irreducible back)

ttbar MC:

144 events

Mean: 2.04

RMS: 1.24

53 % with jetsig >3

(real MET)

Jet Sig cut efficiencies

Jet Significance in alpgen $Z ightarrow e^+e^- + 2p^-$ vs $tar t$				
JetSig cut	atop23	ttop2i		
	(# evts passing) efficiency(%)	(ev passing) efficiency(%)		
	# events before the cut: 105	# events before the cut: 144		
≥ 1.2	$(33) \ 31.43 \pm 4.53$	$(131) \ 90.97 \pm 2.39$		
≥ 1.4	$(21) \ 20.0 \pm 3.90$	$(119) \ 82.64 \pm 3.16$		
≥ 1.6	$(15) 14.3 \pm 3.41$	$(109)\ 75.70 \pm 3.57$		
≥ 1.8	(11) 10.5 ± 2.99	$(100) \ 69.44 \pm 3.84$		
≥ 2 .0	(7) 6.6 ± 2.43	$(92) \ 63.89 \pm 4.00$		

^{*} The MET is corrected for level by, but I cut on level 3 corrected jets

$\Delta \phi(MET, jet)$ cut efficiencies

$\Delta\phi(E_T^{\prime}, { m jet})$ vs E_T^{\prime} in alpgen $Z ightarrow e^+e^- + 2p$ vs tt					
$\Delta\phi(E_T, { m jet})$ cut	atop23	llop2i			
	(# cvts passing) efficiency(%)	(ev passing) efficiency(%)			
	# events before the cut: 105	# events before the cut: 144			
≥ 5	(86) 81.9 ± 3.75	$(137) \ 95.14 \pm 1.79$			
≥ 10	(71) 67.6 ± 4.56	$(128) 88.88 \pm 2.62$			
≥ 15	(61) 58.1 \pm 4.81	$(121) \ 84.03 \pm 3.05$			
≥ 20		(111) 77.08 ± 3.5			

Cutting on jetsig = cutting on $\Delta \phi(MET, jet)$ for ttbar

- For ttbar I
 expect that
 jetsig is
 correlated with
 the Δφ angle
 between met
 and nearest jet
- Why not look into this?

ttbar MC

For Z(ee) there is no correlation...

$\Delta\phi(MET, jet)$ for Z(ee) after all cuts

$\Delta \phi$ (MET, jet) vs jetsig

$\Delta \phi(E_{T^{-}})$ jet) vs jetsig in alpgen $Z ightarrow e^{+}e^{-} + 2p^{-}$ vs $tar{t}$			
$(\Delta\phi(E_{T}, { m jet}), { m jetsig}) { m \ cut}$	atop23	ttop2i	
	(# evts passing) efficiency(%)	(ev passing) efficiency $(\%)$	
	# events before the cut: 105	# events before the cut: 144	
(≥1.0,≥ 10)	$(32)\ 28.32\ \pm\ 4.24$	$(132) \ 91.7 \pm 2.30$	
(≥1.1,≥ 10)	$(29)\ 25.66\ \pm\ 4.11$	$(130) \ 90.3 \pm 2.47$	
(≥1.2,≥ 10)	$(24)\ 21.24 \pm 3.85$	(126) 87.5 ± 2.75 ◀	~10-15% loss
(≥1.3,≥ 10)	$(24) \ 21.24 \pm 3.85$	(126) 87.5 \pm 2.75	
(≥1.4,≥ 10)	$(17)\ 15.04 \pm 3.36$	$(119) 82.64 \pm 3.16$	
(≥1.2 ,≥ 5)	$(29)\ 25.66 \pm 4.11$	$(127) 88.20 \pm 2.69$	

* The latest corrections are applied here...

~80% rejection

Which is the best choice?

- What is the background we expect in ee mass window, in 100 pb⁻¹, for jetsig >1.2, $\Delta \phi(\text{MET, jet}) > 10$?
 - ttop2i: 0.226 ± 0.018 events
 - ztop2e(Pythia Z(ee)): 0.104 ± 0.021 events (I used $N_{zee+2j(Pythia)}$ * eff(alpgen)
 - ztop2e(poor statistics): 0.04±0.04 events
 - data(Winter): $N_{zee+2jets(data)}$ * eff(alpgen) : 0.07 +/- 0.01 events
 - $S/B \sim 2 \rightarrow 3$ just in the mass window

Relative uncertainty on the xsec (fom)

So let's replace the Z mass cut with...

• if(#jets>=1 with $|\Delta\phi(\text{met,jet}) < 90|$) then Jet Significance > 1.2

&&

- $\Delta \phi$ (MET,nearest jet) > 10 degrees
- Still I want to have the freedom to fine tune this cut with the full categories in place (in few days, once Chris,I and everyone agree on the acceptance numbers...)
- A preliminary version of a cdfnote is circulated around and I will post it soon...